Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc.
نویسندگان
چکیده
In a variety of bacteria, the phosphotransferase protein IIA(Glc) plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H(+), using a mechanism in which sugar- and H(+)-binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIA(Glc) (inducer exclusion). Here we report the thermodynamic features of the IIA(Glc)-LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIA(Glc) binds to LacY with a Kd of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIA(Glc) binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIA(Glc) blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIA(Glc) binding. The precise mechanism of the inhibition of LacY by IIA(Glc) elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIA(Glc).
منابع مشابه
Topology of allosteric regulation of lactose permease.
Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding i...
متن کاملCarbohydrate transport in bacteria.
INTRODUCTION 385 FACILITATED DIFFUSION 386 Glycerol Transport System in Escherichia coli ........ 386 Facilitated Diffusion Systems in Other Bacteria ........ 387 OSMOTIC SHOCK-SENSITIVE ACTIVE TRANSPORT ........................ 387 Maltose Transport System in E. coli ..... .............................. .. 388 Other Shock-Sensitive Systems......... 390 PROTON-LINKED ACTIVETRANSPORT....... 390 ...
متن کاملSugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles.
The accompanying articles (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253; Mitchell, W.J., Saffen, D. W., and Roseman, S. (1987) J. Biol. Chem. 262, 16254-16260) show that "inducer exclusion" in intact cells of Escherichia coli is regulated by IIIGlc, a protein encoded by the crr gene of the phosphoenolpyruvate:glycose phosphotransferase syste...
متن کاملPhosphorylation and functional properties of the IIA domain of the lactose transport protein of Streptococcus thermophilus.
The lactose-H+ symport protein (LacS) of Streptococcus thermophilus has a carboxyl-terminal regulatory domain (IIALacS) that is homologous to a family of proteins and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in various organisms, of which IIAGlc of Escherichia coli is the best-characterized member. On the basis of these similarities, it was anticip...
متن کاملSugar Transport by the Bacterial Phosphotransferase System IN VIVO REGULATION OF LACTOSE TRANSPORT IN ESCHERICHIA COLI BY IIIG", A PROTEIN OF THE PHOSPHOEN0LPYRUVATE:GLYCOSE PHOSPHOTRANSFERASE SYSTEM*
Escherichia coli and Salmonella typhimurium preferentially utilize sugar substrates of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) when the growth medium also contains other sugars. This phenomenon, diauxic growth, is regulated by the crr gene, which encodes the PTS protein IIIG'" (Saffen, D. W., Presper, K. A., Doering, T. L., and Roseman, S. (1987) J. Biol. Chem. 16241-162...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 8 شماره
صفحات -
تاریخ انتشار 2015